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1 Introduction 

The companion tutorials Part Space and Part Spaces for Scientific Computing gave a 
primarily non-mathematical introduction to the concepts of the sheaf data model. This 
tutorial provides the complement - it introduces the mathematical concepts and how they 
can be used in the analysis of problem domains and the design of software. 

Full treatment of all the mathematical concepts we will discuss would be a major 
undertaking, well beyond the scope of this tutorial. Instead we describe the fundamental 
notion of each concept and usually the basic definitions. We then suggest additional 
reading with pointers into the references given in Appendix A. 

We assume the reader has read the companion tutorials and is familiar with the concepts 
presented there. We also assume that the reader is familar with the fundamental ideas of 
mathematical set theory: set, subset, inclusion, intersection, and union. 

2 A framework for domain analysis 

Conventional software analysis and design is a process conducted within the scope of 
some specific product or application. The requirements statement for the application is 
the input to the process and a software design is the output. Domain analysis, by contrast, 
is a process based on the tenet that a greater degree of software reuse can be realized by 
broadening the scope of the analysis and design activity to a family of related 
applications, an application domain, rather than just a single product. The level of 
mathematical abstraction associated with the sheaf data model naturally applies to a 
broad scope of applications, nominally all of scientific computing, so it is natural to 
organize the concepts into a framework for domain analysis. 

In order to introduce the framework without presupposing knowledge of the 
mathematical concepts we're going to put in it, we have to start with the simple notion of 
a "property association". We won't really define this notion, just give some examples: 

• associate the speed of a car with every instant in a time interval, 
• associate an annual income with each person in some group 
• associate a temperature with every point in a room, and 
• associate a comfort level with every temperature. 
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Such associations are ubiquitous in domains of practical interest and they have been 
studied extensively in mathematics. The mathematical theory identifies three roles within 
such associations: 

• The entity that carries the property is called the base space. Every point of the 
base space gets at least one property value associated with it. 

• The set of all possible property values is called the fiber space. Any given 
property value may or may not be associated with the base space. 

• The association itself is called a section. The set of all possible associations 
between a given base space and fiber space is called a section space. 

The motivation for these names will become clear later. In the mean time, we can identify 
these roles for each of the initial examples: 

• Associate the speed of a car with every instant in a time interval: speed is the fiber 
space, the interval of time is the base space. The speed as a function of time is a 
section. The car might have proceded with a different speed profile, that would be 
another section. 

• Associate an annual income with each person in some group of people: income is 
the fiber space, the group of people is the base space. The association of income 
and person in a given year is a section. In some other year the incomes might be 
different, which would be another section. 

• Associate a temperature with every point in a room: temperature is the fiber 
space, the room is the base space. At any given time, there is a particular 
temperature associated with each point and this association is a section. At a 
different time the temperatures might be different, this would a different section.  

• Associate a comfort level with every temperature: comfort level is the fiber space, 
temperature is the base space. Different people might assign different comfort 
levels, the comfort profile for each person would be a different section. 

As the last two examples show, base space and fiber space are indeed roles, not types. A 
given space can play different roles in different associations. 

Along with these three roles, our framework will be organized around three aspects: 

• The conceptual aspect concerns the problem domain described in its own 
language, without regard to computer representation. 

• The computational aspect concerns the entities of the conceptual aspect 
reformulated for computer representation, approximation of infinite spaces by 
finite spaces in particular. 

• The data aspect concerns the entities of the computational aspect reformulated as 
persistent data, with no notion of procedure invocation or execution. 

These three aspects can be roughly compared to three common phases of conventional 
analysis as shown in Figure 1. However, as suggested graphically, the three conventional 
phases are considered separate models while, as we shall see, the three aspects of the 
sheaf approach form a single, integrated mathematical model.  
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Figure 1: Sheaf system analysis aspects compared with conventional analysis. 

The three roles and the three aspects form a matrix of analysis activities and the 
mathematical concepts of the sheaf data model can be viewed as a mathematical toolkit 
for carrying out the activities. The analysis activities for the framework and associated 
mathematical tools are shown in Figure 2. 

This tutorial will describe the mathematical tools available for each of the activities, 
proceeding across the rows, starting with the conceptual aspect. 

3 An extended example 

We will introduce the mathematical concepts in the context of an extended example 
based on wells and well logs. We'll use a branched well with one side bore, a schematic 
representation of which is shown in Figure 3. The terms "upper well" and "lower well" 
are not standard terminology for wells, but the meaning should be clear enough and we 
will need to refer to these parts at various points in the discussion. 
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Figure 2: A framework for domain analysis. 
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4 Conceptual aspect for the base space role 

We'll start our row-major traversal of Figure 2 in the upper left-hand corner, the 
conceptual aspect of the base space role. We consider our well as a base space, that is, 
something we can associate properties with. There are 3 primary tools in the 
mathematical toolkit for describing base spaces: point set, topological space, and partially 
ordered set. These tools form a layered set of abstractions, both topological space and 
partially ordered set add structure to the point set abstraction. For the reader familiar with 
object-oriented programming, it may be useful to think of this layering of abstractions as 
very similar to inheritance. A topological space is_a point set and a partially ordered set 
is_a point set. 

4.1 Point set 

Point set is the least structured, most abstract of these concepts. The fundamental notion 
of a point set is pretty simple: a point set is just an unstructured collection of featureless 
objects, as depicted graphically in Figure 4. By unstructured, we mean there is no notion 
of order, dimension, shape, or position associated with a point set. By featureless, we 
mean that, at least as far as point set theory is concerned, the objects have no properties 
except identity, we can somehow tell one from another, and we can tell whether a given 
object is in our collection or not. That is all; a point set is just a blob of points. In fact, it's 
not even a blob because blobiness suggests dimensionality. 

The word "point" in "point set" is traditional, but it doesn't really mean much. A point set 
is just a set and a point is anything we want it to be. A point is specifically not required to 
be a coordinate tuple (x, y, z) as it is sometimes defined in more concrete settings such as 
computer graphics. Coordinates are an additional structure that, as we shall see, is treated 
as a property association, not an intrinsic attribute of a point. Point sets are typically 
infinite in the conceptual aspect, but typically finite in the computational and data 
aspects. Just how this "discretization" comes about and how to describe it is a central 
theme in our analysis framework. 

 

Figure 4: An infinite point set, with three points specifically identified. 

Now let's consider our well as a point set. We assume our well actually exists somewhere 
on Earth. The points in the well are a subset of the points in the Earth. The Earth is a 
subset of all physical space and, following the usual assumptions of elementary physics 
and geology, we assume physical space is the space of three dimensional Euclidean 
geometry, "E3". Mathematically, E3 is a point set, and any subset of a point set is a point 
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set, so our well is a point set. It is an infinite point set and, at the point set level of 
abstraction, has no other properties, not even shape. 

4.2 Topological space 

The next layer of abstraction is topological space. A topological space is a point set with 
the notion of continuity added, but still without any notion of dimension, shape, or 
position. The basic idea is that if two concrete spaces that do have these features can be 
continuously deformed into each other, as suggested in Figure 5, then they have the same 
underlying abstract topological space and are said to be topologically equivalent.  

 

Figure 5: Topologically equivalent spaces 

On the other hand, if we have to discontinuously deform, that is tear or puncture, a space 
to transform one to the other then they are not the same, as suggested in Figure 6. 

 

Figure 6: Spaces that are not topologically equivalent. 

So a topological space is point set and, like a point set, has no dimension, shape, or 
position, but it does have a definite number of holes or disjoint pieces. 

The mathematical machinery by which one defines continuity without having any 
specific definition of dimension, shape, or position is probably the most abstract of the 
concepts in our toolkit. We'll state the basic definitions, but rely mostly on the intuitive 
notion of continuous deformation whenever possible. 

A topological space X is a pair (X, Ω) where X is a point set and Ω is a set of subsets of 
X, called the open sets of X. The open sets satisfy the following axioms: 

• any union of open sets is open, 
• any finite intersection of open sets is open, and 
• X and the empty set � are open. 

Ω is also called the topology of X. A map φ: X →  Y, where X and Y are topological 
spaces is continuous if the inverse image of an open set in Y is always open in X. If φ is a 
one-to-one correspondence (bijection) and both φ and its inverse are continuous, then φ is 
a homeomorphism and X and Y are said to be homeomorphic. Homeomorphism is the 
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technical term for what we called a continuous deformation above. Homeomorphic and 
topologically equivalent are synonyms. 

That's it for the basic definitions. They are deceptively simple but elaborating their 
meaning and implications is a task well beyond the scope of this tutorial. The reader is 
refered to the "Additional reading", below. 

Is our well a topological space? We've already seen that the well is a subset of E3. It is 
well known that E3 is a topological space, perhaps the most common example of one, 
and a subset of a topological space is also a topological space. So our well is a 
topological space. Still featureless, no dimension, no shape, but we can talk about the 
number of holes (0) or disjoint pieces (1). 

4.3 Partially ordered set 

We discussed extensively the notion of "part space" in the first two tutorials in this series, 
Part Space and Part Spaces for Scientific Computing. The partially order set, or "poset" 
for short, is the fundamental mathematical concept underlying the part space metaphor. 

Before we define the partially order set abstraction, we first have to recall a few concepts 
from set theory. The Cartesian product of two sets A and B, denoted A � B, is the set of 
all pairs of members, one from A and one from B. The Cartesian product can be 
represented as a table, with one column for A, one column for B, and a row for each 
possible pair (a ∈ A, b ∈ B). A relation on A and B is a subset of A � B. A relation can 
also be represented as a table, with the same columns as the Cartesian product, but only 
some of the rows. A relation on a single set B is a subset of B � B. 

With those facts in hand, we can define partially ordered set. A partially ordered set B 
consists of two components, a regular set called the base set B and a relation "≤" on B 
called the order relation. The set B can contain any type of object and the relation ≤ can 
have any type-specific definition and meaning, but it must satisfy three axioms. For all b, 
b', and b" members of B, ≤ must satisfy: 

b ≤ b     (reflexive property) 
b ≤ b' and b' ≤ b" implies b ≤ b" (transitive property) 
b ≤ b' and b' ≤ b implies b = b' (antisymmetric property) 

The relation is called the order relation and is traditionally represented by the symbol ≤, 
but the meaning of these axioms would be clearer to the beginner if it were called the 
inclusion relation and represented by the symbol ⊆. Subset inclusion is the prototypical 
example of an order relation and the axioms capture the essential behavior of inclusion. 

The typical base space in the scientific computing domain is modeled as a topological 
space, and hence a point set. But these base spaces typically also have some sort of part 
structure which can be modeled as partially ordered set. So the typical base space has 
both a set of points and a set of parts. It's important to keep straight which set is which. 
Each part of the base space corresponds to a subset of the points in the base space. We 
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can define an order relation for the set of parts using subset inclusion in the set of points. 
That is, part b' ≤ part b if and only if the point subset corresponding to part b' is included 
in the point subset corresponding to part b. 

We can use our well example to make this construction more concrete. We've already 
seen that the well is a point set. We can use brace notation to enumerate some of the 
points in this set: 

well = {pb00, pb01, ..., pb10, pb11, ..., pj, ..., puwi, puwi+1, puwi+2, ..., pdf} 

where the pi are each points and the meaning of the subscripts will become clear shortly. 
Of course the set contains a infinite number of points, so we can't fully enumerate them 
this way. The ellipsis ... indicates all the points we've not explicitly enumerated. 

Referring to Figure 3, we see several parts identified. So in addition to the set of points, 
we also have a set of parts: 

parts = {bore0, bore1, lower well, junction, upper well, derrick floor} 

It's clear from the figure that each part of the well corresponds to a subset of the points in 
the well. Using the points we enumerated above: 

bore 0 = {pb00, pb01, ..., pj} 
bore 1 = {pb10, pb11, ..., pj} 
lower well = {pb00, pb01, ..., pb10, pb11, ..., pj} 
junction = {pj} 
upper well = {pj, ..., puwi, puwi+1, puwi+2, ..., pdf } 
derrick floor = {pdf} 

Most of the parts, bore 1, bore 2, lower well, upper well, are infinite point sets, but the 
junction and the derrick floor are each a subset containing a single point. 

So the set of parts can be viewed as a set of subsets: 

parts = { {pb00, pb01, ..., pj}, {pb10, pb11, ..., pj}, {pb00, pb01, ..., pb10, pb11, ..., pj}, {pj}, 
 {pj, ..., puwi, puwi+1, puwi+2, ..., pdf }, {pdf} } 

We can define an order relation for the set of parts using subset inclusion in the point set. 
For instance,  junction ≤ bore0 because {pj} ⊆ {pb00, pb01, ..., pj}. Remembering from 
above that a relation can be described as a table, we display the entire order relation in 
Table 1. 
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Table 1: Order relation on well parts. 

Lesser Part Greater Part 
derrick floor derrick floor 
derrick floor upper well 
derrick floor well 
junction junction 
junction bore 0 
junction bore 1 
junction lower well 
junction upper well 
junction well 
bore 0 bore 0 
bore 0 lower well 
bore 0 well 
bore1 bore1 
bore1 lower well 
bore 1 well 
upper well upper well 
upper well well 
well well 

 

Table 2: Covering relation on well 
parts. 

Covered Part Covering Part 
derrick floor upper well 
junction bore 0 
junction bore 1 
junction upper well 
bore 0 lower well 
bore1 lower well 
lower well well 
upper well well 

 

The order relation is a complete but not very efficient representation of the essential 
information. We can use the axioms of the order relation to reduce the size of the table, at 
least for finite posets. Since the reflexive axiom requires b ≤ b for all b ∈ B, there's no 
need to explicitly store (derrick floor, derrick floor), (junction, junction) and other such 
rows in the table. Similarly, the transitive axiom means that since (junction, bore 0) and 
(bore 0, lower well) are in the table, there's no need to explicitly store (junction, lower 
well) in the table either.  

Removing all such transitive and reflexive members of a relation produces a different 
relation, called the transitive, reflexive reduction of the original relation. In the case of an 
order relation, the transitive, reflexive reduction is called the covering relation. We will 
denote the covering relation with the symbol "−<". If b' −< b, we say that b' is covered by 
b, or b covers b'. 

We can also define the covering relation directly. First we define the strict order relation 
"<" by b' < b if and only if b' ≤ b and b' ≠ b. Then we can define b' −< b if and only if 
b' < b and there is no intervening b" such that b' < b" < b. The "no intervening" 
requirement in the definition implies that for some infinite posets the cover relation may 
be empty. For instance, for real numbers x and y with x < y, there is always an 
intervening number z such that x < z < y so the covering relation is empty. But for finite 
posets the covering relation always exists and is both determined by and determines the 
order relation. 
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The covering relation for our well parts poset is shown in Table 2. As even this very 
small example shows, the cover relation is much smaller than the order relation. 

We can use either the order relation or covering relation to represent a finite poset as a 
graph. We represent each member of the poset as a node in the graph and we create a link 
from b to b' if and only if b ≤ b' or b covers b', respectively. The result is a directed 
acyclic graph, a well-known, powerful, and efficient data structure which we can use to 
represent a partially ordered set on the computer.  

We can also use either of these graphs to visualize a  poset. Each node is represented by a 
box. For the order relation graph, the box is positioned so that if there is a link from b to 
b', b' is higher on the page than b. The cover relation links point in the opposite direction, 
if b covers b', then b' ≤ b so for the covering relation b' is positioned lower on the page. 
The order and covering relation graphs for the well parts poset are shown in Figure 7 and 
Figure 8, respectively. As one would expect from the size of the table representation, the 
covering relation graph is considerably simpler. The covering relation graph is called a 
Hasse diagram in mathematics and we will use only it, not the order relation diagram, to 
visualize posets. 

 

 

Figure 7: Graph of order relation for 
well parts poset 

 

Figure 8: Graph of cover relation (Hasse 
diagram) for well parts poset. 

Finally, it useful to observe that our well has two kinds of parts. A composite part is a 
part that is equivalent to a collection of other parts while a basic part is not. Each of the 
well parts is a subset of the points in the well, but the subset corresponding to the lower 
well is precisely the union of subsets corresponding to bore 0 and bore 1. Similarly, the 
well itself is equivalent to the union of the lower well and the upper well. On the other 
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hand, bore 0, bore 1, the junction, the upper well, and the derrick floor are basic parts. 
None of the subsets associated with these parts can be expressed as the union of other 
parts. The basic parts, which are colored red in Figure 8, form a set of building blocks 
from which we can construct composite parts. 

4.4 Summary 

The base space role in the conceptual aspect is played by some sort of set, typically a 
point set. The base space typically has two additional layers of structure. It is typically a 
topological space and has a partially ordered set of parts. 

4.5 Additional reading 

General set theory is the foundation for all base space types (and fiber space and section 
space types as well). 

(Halmos, 1974) provides an accessible introduction to the basics of set theory. 

(Rosen, 1995) covers both sets and posets, as well as many other topics, at an 
introductory level specifically intended for applications in computer science. 

Point sets and topological spaces are typically treated together. 

(Janich, 1984) provides a relaxed introduction to topology, emphasizing intuitive, 
graphical motiviation of each concept before going into more formal definition. 

(Munkres, 1975) is an intermediate level introduction. More formal than Janich but 
still introductory and covers more material. 

(Fuks, et al., 1984) is a much more thorough and formal treatise. It is for the beginner 
only in the sense that it supposes no knowledge of topology on the part of the reader 
and covers everything from the fundamental concepts to advanced topics. But its 
choice of topics is well matched to the requirements of the sheaf data model and when 
you really need to know the details, this is the place to look. 

Partially ordered sets and lattices have historially been of interest mostly in pure 
mathematics but have become more important to applications in the last two decades. 

(Davey, et al., 2002) is now the standard introductory text in the field. It is readable, if 
perhaps with some effort, and specifically addresses applications, especially in 
computer and information science. 

(Birkhoff, 1995) is the classic reference on partially ordered sets and lattices by a 
founder of the field. It covers a wide range of topics but is intended for academic 
mathematicians. 
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5 Conceptual aspect for the fiber space role 

The fiber space role in a property association is a space of all possible values of some 
property. In principle, any type can be used as a fiber space, including the point set, 
topological space, and poset types that we've just seen are important in the base space 
role. In scientific computing applications however, the fiber space role is typically played 
by one of the family of property types defined by mathematical physics: scalar types, 
vector types, and tensor types. 

These types are all specializations of the abstract vector space type and can be organized 
into an inheritance hierarchy, the core of which is shown in Figure 9. The arrows here 
represent inheritance, not the order or the covering relation, but we will see in section 
11.1 that these concepts are related. 

Vd

Tp

STp ATp

ST2 AT2 AT1 AT0 = RT2

AT2<E2> AT2<E3> E2 E3ST2<E3> ST2<E2>T2<E2> T2<E3>

AT1<Ed> = Ed

 

Figure 9: The core of the physical property inheritance hierarchy. 

The central types of this hierarchy are: 

• Vd: abstract vector of dimension d 
• Tp: general tensor of degree p 
• ATp: antisymmetric tensor of degree p 
• Stp: symmetric tensor of degree p 

As shown in the figure, the hierarchy differentiates on symmetry and degree. In addition, 
since a tensor is fundamentally a map on vectors and a tensor space is defined with 
respect to the specific kind of vector it maps, the hierarchy differentiates on vector type 
as well. The figure shows only a portion of the complete hierarchy supported by the 
Sheaf System, the portion corresponding to degrees 0 through 2 and vector spaces E2 and 
E3. 
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Although the mathematical structure of this hierarchy is critical to the design and 
implementation of the Sheaf System class libraries, applications typically only use the 
leaf classes in the core of the hierarchy, as shown in the figure. 

5.1 Additional reading 

The abstract vector space aka linear algebra is the base type for all the property types of 
mathematical physics. 

(Janich, 1994) is a friendly introduction to the subject. 

The extensive family of physical property types is based on the theory of multilinear 
algebra, which is built on top of linear algebra. Unfortunately there does not seem to be a 
reference that is both accessible and comprehensive. So we have to look in several places. 

(Bishop, et al., 1980) Chapter 2, "Tensor Algebra" is the closest thing to an accessible 
and complete treatment. If you can only afford one reference, this is the one. But it's a 
Dover book, so you will be able to afford others! It also includes chapters on set 
theory, topology, and other relevant subjects. 

(Crampin, et al., 1986) Chapter 4, "Volumes and Subspaces" covers exterior algebra 
including multivectors and multiforms. All the other chapters address relevant topics 
as well, so buy this one with the money you saved because Bishop and Goldberg was a 
Dover book. 

(Koenderink, 1990), section 3.4 "The myopic view" gives an intuitive account of 
linear and multilinear algebra with lots of pictures, but few formal definitions. It's very 
helpful when combined with the formal treatment in (Crampin, et al., 1986). 

(Abraham, et al., 1983), Chapter 5 "Tensors" and Chapter 6 "Differential Forms". This 
book can hurt your head, but as with Fuks and Rokhlin for topology, if you really need 
to know all the details, this is often the place to go. 

6 Conceptual aspect for section role 

We introduced the notion of section as an association between an entity that carries some 
property, which we referred to as the base space, and the collection of all possible 
property values, which we called the fiber space. A section associates a member of the 
fiber space with each member of the base space. 

There are two mathematical formalisms to describe such associations. The more familiar 
formalism is the map formalism. The other is the fiber bundle formalism. Each formalism 
defines its own terminology for the association, as shown in Table 3. 
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Table 3: Terminology for property associations 

Formalism Entity Property Association 
map domain range map or function 

fiber bundle base space fiber space section 

Our terminonology is derived from the fiber bundle formalism. The fiber bundle 
formalism is more general than the map formalism and, as we will show, can deal with 
problems the simple map formalism can not. But in some respects, the fiber bundle 
formalism is built on top of the map formalism, so we have to first describe some basic 
features of maps. 

6.1 Map formalism 

The domain and range of a map are each assumed to be a set. The map associates a 
member of the range with each member of the domain and we usually think of a map 
using an active metaphor. The map "sends" each member of the domain to some member 
of the range. This action is typically denoted with an arrow. If φ is a map, B is its domain 
and F is its range, we write: 

φ: B →  F 

There is another, more static description for a map. A map φ must specify a member of F 
for each member of B. So if B has n members, we need an n-tuple of members of F: 

φ = (fb1, fb2, ..., fbn) where B = {b1, b2, ..., bn} 

We've already introduced the binary Cartesian product in section 4.3. In particular, we 
introduced the Cartesian product of a set with itself. The Cartesian product of F with 
itself, F � F, is the set of all pairs of members of F: 

F � F = {(fi, fj)} 

We can iterate the Cartesian product to any number of factors, F � F � F, 
F � F � F � F, etc. If we iterate the product of F with one factor for each member of 
another set, for instance the domain B, we get a construction called the Cartesian power, 
denoted FB. FB is the set of all n-tuples of members of F, with one component in the tuple 
for each member of B: 

FB = {(fb1, fb2, ..., fbn)} 

Comparing this with the description of our map φ as a n-tuple, we can see that each n-
tuple is a map and FB is the set of all possible maps from B to F. We previously 
introduced the term "section space" for the set of all possible associations between a 
particular domain and range. So our section space is in fact the Cartesian power, fiber 
space to the base space power, at least for associations that can be described as maps. 
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Table 4: The Cartesian power 
boolZ3 

1 2
boolZ3

F

0
bool boolbool

F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

 

Table 5: The Cartesian product 
Z3 � bool 

Z3 bool
Z3 x bool

0 F
0 T
1 F
1 T
2 F
2 T

 

 

Some examples will help clarify this notion. First let's take a simple, finite domain, a set 
of 3 integers: 

Z3 = {0, 1, 2} 

and a simple range, the set of truth values: 

bool = {F, T} 

The section space of all possible maps f: Z3 →  bool is the Cartesian power:  

boolZ3 = bool × bool × bool 

We can represent it as a table, as shown in Table 4, with the columns labelled by the 
members of B. Each row in this table is a map from Z3 to bool. 

Beginners often confuse the Cartesian power with the Cartesian product Z3 � bool. As 
shown in Table 5, each member of the Cartesian product is a pair (i ∈ Z3, v ∈ bool). 

Now let's examine a more complex case: temperature on the surface of the Earth. The 
domain is the surface of the Earth, which we will take to be a sphere, S2, an infinite set of 
points. The range is the set of all temperatures, which we will take to be the set of real 
numbers, R. The section space is the Cartesian power RS2. We can still, at least 
informally, think of this as a table. But since there are an infinite number of members in 
the base space, the power has an infinite number of factors and the table has an infinite 
number of columns. An infinite number of columns means an infinite number of rows.  
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Even worse, in the finite case we could enumerate the  members of the domain and label 
the columns with the members. How do we even identify the members of the domain in 
the infinite case? We've tried to suggest all this graphically in Table 6. 

Table 6: Cartesian power RS2 

? ? ...
R R ...

−∞

RS2

−∞ ...
... ... ...

0.0 0.0 ...
... ... ...
∞ ∞ ...

 

The solution to our problem is to use another property association to label the points in 
the domain. To do this, we need a special kind of property association. The general 
property association associates some property value with each member of the domain, but 
it may associate the same property value with more than one member of the domain. 
What we want to do is use a property value to uniquely identify each point in the domain, 
so we need an association that is a one-to-one correspondence. We'll call such a property 
"coordinates" and refer to a point by the value of the coordinates at the point. 

So with that goal in mind, let's try to establish some coordinates for the surface of a 
sphere. Figure 10 shows ordinary latitude-longitude coordinates for a sphere. But lat-lon 
has well known problems as a coordinate system. There is not a one-to-one 
correspondence between the line (lat = 90, lon = *) and the single point at the pole on the 
sphere. Similarly, every point on the international date line gets two lat-lon pairs. 
Furthermore, latitude and longitude define a local basis for directions at each point, with 
one basis vector pointing towards increasing latitude and one towards increasing 
longitude, as indicated by the red basis vectors in the figure. The local basis vectors are 
also not one-to-one and continuous at the poles. 

The problems with latitude and longitude as coordinates are symptomatic of a 
fundamental mathematical problem: it is not always possible to cover an entire domain 
with a single one-to-one, continuous coordinate system. Because of this fundamental fact, 
we can not always represent property associations as simple maps. The fiber bundle 
formalism was developed specifically to overcome this problem. 
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Figure 10: Latitude and longitude coordinates for S2 

6.2 Fiber bundle formalism 

The fundamental idea of fiber bundle theory is to decompose the domain into patches and 
reformulate the notion of map as a collection of simple maps, one on each patch. The first 
step in this program is to recast the notion of a simple map in more geometric terms. 

We'll return to our branched well to show how this reformulation proceeds. We'll use the 
well as a domain and assume we have a scalar property such as temperature.  

base space = well fiber = R1 bundle = well x R1 section ⊂ well x R
 

Figure 11: The notion of a "trivial" fiber bundle. 

Figure 11 shows the fiber bundle interpretation of this example. The domain, referred to 
as the base space in fiber bundle terminology, is the well. The range, or fiber space, is the 
real number line. The fiber bundle is the Cartesian product of the base space and the fiber 
space. We can visualize this Cartesian product as consisting of a copy of the fiber space 
attached to each point in the base space. Since there are an infinite number of points in 
the base space, we have an infinite number of fibers, a "bundle" of them, but the figure 
only shows a few. Now the value of the map corresponds to a particular point on each 
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fiber and collectively these points define a cross-section, or just section for short, of the 
bundle. So a map is referred to as a section of a fiber bundle. 

So far, this is just a reformulation of map. Now we decompose the base space into a 
collection of overlapping patches, as shown in Figure 12. The patches are explicitly 
chosen so that each can be equipped with coordinates and the property association is a 
simple map on each patch. 

transition functions
ba

patches section on patch a section on patch b
 

Figure 12: The notion of a non-trivial bundle. 

Usually we want our property association, the section, to be single valued. That is, there 
should be a single value for the property at each point in our base space. But wherever the 
patches overlap, we will have a property value in each patch. The fiber bundle formalism 
explicitly assumes that each patch may use a different scale, calibration, or reference 
orientation for representing the property. Sometimes the mathematics requires the use of 
such multiple reference frames for the property. But even when such frames are not 
required theoretically, they may be desireable for practical reasons. In any case, the fiber 
bundle is equipped with "transition functions" for converting the property values in one 
patch to the reference frame of any overlapping patch. This restores the notion of the 
section being single valued, even when it is multiply stored on overlapping patches. 

6.3 Summary 

In simple cases, a property association is represented mathematically as a map. The 
section space for a simple map is the Cartesian power of its fiber space to the base space 
power. The fiber bundle formalism is designed to handle complex cases where the base 
space must be decomposed into patches and a property association represented as a 
collection of simple maps, one on each patch. 

6.4 Additional reading 

The map or function concept is treated in most discussions of set theory. 
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(Halmos, 1974) Section 8 "Functions" succinctly covers the essentials. He defines the 
Cartesian power YX as just notation for the set of all functions from X to Y, which is 
perhaps a bit too succinct. 

(Munkres, 1975) Chapter 1, section 2 "Functions" also covers the essentials. Section 5 
"Arbitrary Cartesian Products" takes some care to define products indexed by both 
finite and infinite sets. The Cartesian power pops out of the discussion unannounced 
right at the end of the section. 

Fiber bundle theory became part of mainstream mathematical physics in the 1970's and 
several introductory texts followed a decade or so later. None of the available references 
are simple. An introductory paragraph in (Crampin, et al., 1986) nicely sums up the 
fundamental difficulty with fiber bundles: "It will be clear that the definition of a fibre 
bundle (as distinct from the object itself) is a fairly complex matter."  

(Nash, et al., 1983) Chapter 7 "Fibre Bundles and Further Differential Geometry" 
presents the basics, with pictures. Note the British (as opposed to American) spelling 
of fiber. 

(Crampin, et al., 1986) Chapter 14 "Fibre Bundles" provides a more precise treatment, 
but no pictures. 

(Abraham, et al., 1983) chaper 3, section 3 "Vector Bundles" gives a precise treatment 
of vector bundles, the most important type of fiber bundle, with numerous pictures. 

7 Computational aspect for base space role 

The computational aspect focuses on reformulation of the entities of the conceptual 
aspect for representation on the computer. For base space entities, the traditional notion 
of computer representation is that we somehow "discretize" or "sample" the base space. 
A more accurate description is that we refine the poset of parts. 

Refinement means to subdivide each part into smaller parts, the union of which equals 
the original part. We don't in principle discard any of the points in the original part, in 
contrast to what the terms discretization or sampling suggest. Each basic part in the 
original poset becomes a composite part equivalent to the union of the new, finer-grained 
basic parts. The collection of new basic parts is usually called a mesh and the refinement 
process is called meshing or mesh generation. 

Refinement introduces more basic parts into the poset of parts. The size and number of 
basic parts in a mesh is driven by the need for numerical accuracy; higher accuracy 
requires more, smaller basic parts. In realistic cases, meshing introduces many more basic 
parts, typically 103 to 109 or more times as many. Meshing may also introduce new 
composite parts. For instance, the entire mesh may be decomposed into "domains" for 
parallel processing. 

We can illustrate the meshing as refinement notion using our well example. We'll have to 
use just a few basic parts in order to make drawing the pictures feasible. Figure 13 shows 
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a geometric view of meshing the well base space while Figure 14 shows the refinement 
as a covering relation graph (Hasse diagram). As you can see, each old basic part is 
refined into multiple new basic parts, except the derrick floor and junction, which only 
contained a single point each to start with. Each old basic part becomes a new composite 
part. 

bore 1

bore 2

well

Lower 
well

Upper 
well

s0

s1

s2

s3

s4

s5

df

v1

j

v3

v4

v5

v6
bore 1

bore 2

well

Lower 
well

Upper 
well

j

df

 

Figure 13: Geometric view of meshing as part refinement. 

Refinement increases the number of possible composite parts exponentially. Here we've 
only increased the number of basic parts by a small factor, but as we said above, meshing 
increases the number of basic parts by a very large factor in practice. The number of 
possible composite parts becomes enormous, so we need a mathematical tool to manage 
all the potential parts. As we've already seen in the previous tutorials, that tool is part 
space. 

well

upper well

bore 1 bore 2

junction

lower well

df

well

upper well

bore 1 bore 2

junction

lower well

s0 s1 s2 s3 s4 s5

df v1 v3 v4 v5 v6
 

Figure 14: Covering relation graph view of meshing as part refinement. 
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7.1 Finite distributive lattice 

When we introduced the partially ordered set concept in section 4.3, we said it was the 
fundamental mathematical concept underlying the part space metaphor. True enough, but 
it is not the only mathematical concept behind the metaphor. Associated with every finite 
poset is another poset, a special kind of poset called a finite distributive lattice.  

Remember that our part space metaphor identified basic and composite parts and 
organized them into a partially ordered set. We defined part space as the set of all distinct 
assemblies that can be generated from the set of basic parts. The precise mathematical 
concept corresponding to part space is the finite distributive lattice associated with the 
poset of basic parts. 

Given any poset P, any member p ∈ P, and any subset S ⊆ P, then if s ≤ p for all s ∈ S, 
we say that p is an upper bound for S. If the set of all upper bounds for S has a unique 
least member, we call it the least upper bound or join of S. The join of two members p 
and p' will be denoted p � p' and the join of a subset S will be denoted �S. 

Similarly, if p ≤ s for all s, we call p a lower bound for S and if the set of all lower 
bounds has a unique greatest member we call it the greatest lower bound or meet of S. 
The meet of p and p' will be noted p � p' and the meet of S will be denoted �S. 

A lattice is a poset in which the join and meet exist for any finite subset S. A complete 
lattice is a lattice in which join and meet exist for every subset S, including infinite 
subsets if the lattice has them. Every finite lattice is thus a complete lattice. 

Every complete lattice has a unique greatest member, called top, which is the join of the 
entire lattice. Similarly it has a unique least member, called bottom, which is the meet of 
the entire lattice. 

A distributive lattice P satisfies the distributive law:  

p � (p' � p") = (p � p') � (p � p")  

for all p, p', and p" in P. 

An example will help clarify these definitions. As always, we'll have to keep the example 
small to make the diagrams manageable. The well poset is already too large to draw the 
entire part space associated with it, so we'll have to use an even smaller example, the two 
segment polyline that we first saw in the Part Spaces For Scientific Computing tutorial. 
Figure 15 shows the polyline and its poset of basic parts, while Figure 16 shows the 
entire finite distributive lattice for the polyline. 
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Figure 15: Poset of basic parts 
for polyline. 

 

Figure 16: Finite distributive 
lattice for polyline. 

We've described part space as the set of all distinct assemblies that can be generated from 
a set of basic parts and we've seen previously that the set of all distinct assemblies is not 
in general the set of all subsets. So what subsets correspond to distinct assemblies? The 
answer is down sets. A down set is a subset of a poset that is closed under going down in 
the graph. When ever a down set contains a member p, it also contains all members less 
than p. The down set (in the poset of basic parts) of a basic part is the part and all the 
parts below it in the graph, all the parts one can reach by following links downward. The 
union of two down sets is a down set and so is their intersection. 

The fundamental theorem of the theory of finite distributive lattices, the Birkhoff 
representation theorem, says that every finite distributive lattice is equivalent 
(isomorphic) to the set of down sets of its poset of basic parts. The set of down sets of a 
poset P is traditionally denoted O(P). A basic part in a finite distributive lattice L is 
formally referred to as a join irreducible member and the set of join irreducible members 
is denoted J(L). The formal statement of the Birkhoff representation theorem is thus that 
for any finite poset P there exists a finite distributive lattice L such that L is isomorphic to 
O(P) and P is isomorphic to J(L). 

Figure 17 depicts the Birkhoff representation theorem for the polyline of Figure 15. The 
memberwise interpretation of this equivalence is that every member (node in the left 
hand side of Figure 17) of a finite distributive lattice can be interpreted as the collection 
of basic parts in its down set (node in right hand side of Figure 17). In practical terms, 
this means we can think of any part in two ways: either as a collection of subparts (right 

s0 s1
v0 v1 v2

v0 v1 v2

s0 s1
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s0 s1
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hand side), or as the single part we get when we join the subparts together (left hand 
side). If the part is already a basic part, the join just gives us the basic part again. 

{v0} {v1} {v2}

{v0, v1} {v0, v2} {v1, v2}

{v0, v1, v2}{s0, v0, v1} {s1, v1, v2}

{s0, s1, v0, v1, v2}

{s0, v0, v1, v2} {s1, v1, v2, v0}

{}

v0 v1 v2

s0 s1

{}

polyline

 

Figure 17: The Birkhoff representation theorem. 

As we said above, the technical term for basic part is "join-irreducble member". We'll 
refer to this by the acronym "JIM" and pronounce it like a person's name. A basic part is 
a member of the lattice that is not equivalent ("reducible") to the join (assembly) of other 
parts. It is a part that is greater than the "sum" of its subparts. We can see this in either 
graph in Figure 17. Each basic part (JIM) has a single member immediately below it in 
the graph and this single member corresponds to the join of the subparts of the JIM. In 
practice, the fact that a JIM is greater than the sum of its parts is the key to interpreting an 
application structure as a finite distributive lattice. A JIM represents something not 
entirely defined by its part decomposition. It introduces something new into the structure. 
For instance, the v0, v1, and v2 parts each introduce a single point while s0 and s1 each 
introduce the infinite number of points in their respective interiors. 

There isn't a specific mathematical term for composite part. But a composite part is not 
join irreducible, it can be represented as the join of some basic parts, so it must be a "join 
reducible member". We'll convert that to the acronym JRM and pronounce it like "germ". 
A JRM always has multiple members immediately below it in the graph and it is the 
smallest member that contains these subparts. It is precisely the sum of its subparts. In 
practice, a JRM is something entirely defined by its part decomposition, a grouping 
construct. 

We've introduced the essential features of finite distributive lattices and we're ready to 
move on. But before doing so, we'll emphasize the importance of the concept. Spatial 
decompositions are ubiquitous in scientific computing. Every such decomposition defines 
a set of basic parts that can be represented as a finite poset. The finite distributive lattice 
gives us a complete space for describing these decompositions and the composite parts 
that can be constructed from them. 
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7.2 Cell complex 

Most of the spatial decompositions encountered in practice, in other words most meshes, 
are in a category of decompositions called cell complexes. 

The definition of a cell complex follows a common pattern in topology: define or analyze 
a topologically complex object by decomposing it into pieces that are topologically 
simple, along with maps of some kind that determine how the simple pieces are "glued" 
together to form the whole complex structure. This pattern occurs repeatedly in various 
similar, but not identical, forms. We've already seen one instance of this pattern in the 
definition of fiber bundle: a map on a topologically complex base space is decomposed 
into a collection of simple maps on simple patches and glued back together with 
transition functions. The definition of cell complex is another variation of the pattern. 

To describe what a cell complex is, we need to introduce some machinery. A partition P 
of a topological space X is a decomposition of X into a set of disjoint subspaces (subsets) 
that completely cover X, that is, the union of the subspaces is the whole space. Every 
point of the space is thus contained in exactly one member of the partition. 

The unit ball Dn in the n-dimensional Euclidean space En, is the set of points with 
distance from the origin ≤ 1 and the unit sphere Sn-1 is the set of points with distance 
from the origin = 1. 

With these preliminary definitions in hand, we can define a cell complex. A cell complex 
or cell decomposition of a topological space X consists of 3 components: 

• a partition C of X into a finite number of subspaces called cells; 

• a map d: C →  Integer which assigns each cell a dimension; and 

• a collection of maps, one for each cell, called the characteristic maps. 

The characteristic map φc for each cell c must have the following properties: 

1) φc is a continuous map from the unit ball Dd(c) to X; 

2) φc maps the interior of the unit ball homeomorphically to the cell c, (remember 
from section 4.3 that a homeomorphic map means domain and range can be 
continuously deformed into each other); and 

3) φc maps Sn-1, the boundary of the ball, to the union of a collection of cells with 
lower dimension. 

We've limited our cell complex to a finite number of cells. Most mathematical texts 
define a more general type of complex, a CW-complex, which allows an infinite number 
of cells if certain additional axioms are satisfied. We will be concerned only with finite 
cell complexes, so we can ignore the additional complexity. 
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All this is much harder to state in words than it is to visualize. Figure 18 shows a simple 
1D cell complex consisting of an open line segment (it doesn't contain its end points) and 
two vertices. D1, the unit ball in 1D, is just the closed line segment [-1.0, 1.0] in E1 and 
S0, the boundary of the ball, is just the two end points in E1. The characteristic map for 
the segment takes the interior of the ball to the segment and S0 to the two vertices. D0 
consists of a single point and S-1 is empty, so the characteristic map for each vertex just 
maps the only point in D0 to the vertex. 

Similarly, Figure 19 shows a 2D cell complex consisting of an open quad, 4 open 
segments, and 4 vertices. D2 is just the unit disk while S1 is the unit circle. The 
characteristic map for the quad takes the interior of the disk to the open quad and the unit 
circle to the union of the 4 segments and 4 vertices. The characteristic maps for each edge 
and each vertex are the same as in the 1D example. 

 

Figure 18: 1D cell complex 

 

Figure 19: 2D cell complex 

We said above that the pattern is to first decompose a complex object into pieces that 
were topologically simple, then provide maps that glue the pieces together. The two 
figures above show how axiom (2) of the characteristic maps guarantees that each piece 
is topologically simple: each cell must be chosen such that it can be mapped 
homeomorphically to the interior of a ball, which is the definition of "topologically 
simple". 

But what about the second part of the pattern, the maps that glue the pieces together? 
Well, the characteristic maps are the only maps in the definition of a cell complex, so 
somehow they must be the glue. Indeed they are and it is axiom (3) that makes them so. 
The cells and characteristic maps can be chosen so that a portion of the boundary in each 
of two or more d-cells gets mapped to the same lower dimensional cells, thus gluing the 
two d-cells together, as shown in Figure 20. 
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Figure 20: Characteristic maps glue cells together. 

The cell complex concept is a useful tool in the computational aspect of our domain 
analysis framework for two reasons. First, as we've already seen in both the Part Spaces 
For Scientific Computing tutorial and in section 6.2 of this tutorial, we need coordinates 
on our base space if we are going to define sections. The characteristic maps of a cell 
complex provide local coordinates. They allow us to refer to any point in a cell by 
specifying a vector in En. Second, the cell complex formalism provides a rigorous bridge 
from the computational notion of mesh to the formal, abstract topology of the base space. 
We won't go into the details, but the cell complex determines the topology. 

We can cast the cell complex concept into an even more useful form however. Note that 
since a cell complex is a partition, the cells of a cell complex, except for the 0-cells, are 
all open sets, they don't include their boundary. For each cell we can form a closed cell 
by taking the union of the cell and its boundary. The boundary of the cell is φc(Sd(c)-1) 
and characteristic map axiom (3) requires it to be a union of cells of lower dimension. In 
other words, although the cells of the complex are all disjoint, the closed cells overlap at 
their boundaries. Each closed cell includes lower dimensional closed cells in its 
boundary. 

The closed cells of a cell complex can be treated as a partially ordered set, with point set 
inclusion as the order relation. Each closed n-cell covers the closed n-1-cells in its 
boundary. Axiom (3) of the characteristic map definition is explictly represented by the 
down set of a cell, as shown in Figure 21. The gluing implied by axiom (3) is represented 
by two or more n-cells both including the same n-1-cell, shown in green in the figure. 
More formally, such "shared inclusion" between cells corresponds precisely to the meet 
of the cells. 

Finally, the inclusion of each n-1-cell in the boundary of an n-cell can be expressed as a 
map from the local coordinates of the n-1-cell to the local coordinates of n-cell and these 
maps can be viewed a sitting on the links of the covering relation graph. The inclusion 
maps determine the characteristic maps of the cell complex. 

2-cellint D2

D2 cell complex

2-cell int D2
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2-cell 2-cell

1-cell 1-cell 1-cell 1-cell 1-cell 1-cell 1-cell

0-cell 0-cell 0-cell 0-cell 0-cell 0-cell
 

Figure 21: The poset of closed cells corresponding to the cell complex of Figure 20. 

The poset of closed cells with inclusion maps is an effective computational representation 
of the cell complex and hence rigorously encodes the abstract topology of the base space. 
The finite distributive lattice associated with the poset provides a complete space for 
representing and managing composite parts assembled from the cells. 

7.3 Additional reading 

Finite distributive lattices. 

(Davey, et al., 2002) Chapter 2 introduces general lattices. Chapter 5 treats finite 
distributive lattices, including the Birkhoff representation theorem. 

(Birkhoff, 1995) Chapter III section 3 gives you the Birkhoff representation theorem 
from Birkhoff himself. But as mentioned above, it is intended for academic 
mathematicians. 

Cell complexes. 

(Janich, 1984) Chapter VII gives a very readable introduction to CW-complexes with 
many helpful pictures. 

(Fuks, et al., 1984) Chapter 2 addresses "Cellular Spaces", which is what Fuks and 
Rokhlin call CW-complexes. As with most topics in their book, the treatment is more 
thorough and detailed than Janich and correspondingly less readable. But sometimes 
you need all the details. 

8 Computational aspect for fiber space role 

We saw in our discussion of the conceptual aspect that any type could be used in the fiber 
space role, but the vector space types from mathematical physics were particularly 
important. There is relatively little reformulation required to represent any of these types 
on the computer. 

We can represent any general entity type as a class using object-oriented programming 
techniques. An entity is then represented as an instance of the class. All the machinery of 
object-oriented programming applies. For instance, attributes of the entity can be 
represented as data members, the operations as member functions, and inheritance can be 
used to represent is_a relationships between types. 
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These techniques apply in particular to the vector space hierarchy of physical property 
types introduced in Figure 9. Each type can be represented as a class; the resulting class 
hierarchy mirrors the type hierarchy of Figure 9. The interior nodes in the tree - Vd, Tp, 
ATp, STp, etc -  are represented by abstract classes while the leaves - E3, T2_E3, 
AT2_E3, ST2_E3, etc - are represented by concrete classes. 

A convenient fact when implementing these classes is that every type is_a abstract vector 
(Vd) and any vector can be represented by its components relative to a basis. The 
components can be represented directly as data members. 

8.1 Additional reading 

The references listed in section 5.1 for the conceptual aspect apply to the computational 
aspect as well. 

9 Computational aspect for the section role 

We saw in the conceptual aspect of the section role that in simple cases we could treat a 
property association as a map. We also saw that this wasn't always possible. In more 
complex cases we needed the fiber bundle formalism which treated the association as a 
collection of simple maps. We now have to consider how to reformulate the notion of 
map so we can represent it on the computer. 

Representation of a simple map on a finite base space is straightforward. Assume we 
have a map from a base space B to a fiber space F, µ: B →  F. We saw in the conceptual 
aspect that the section space for B and F, the space of all maps from B to F, is the 
Cartesian power FB, which can be represented as a table with a column for each member 
of B. As long as the base space is finite, as in Table 4, we can represent this table 
directly. We create a row for each map we are interested in. We can just store this row in 
memory and evaluate the map at a given member of B by just retrieving the appropriate 
value from the row. 

Representation of even a simple map is not so striaght-forward if the base space is an 
infinite set. As we saw in the conceptual aspect, the corresponding table has an infinite 
number of columns, so we can't store even a single row. How do we proceed? 

The common practice approach is to divide and conquer. We subdivide the base space B 
into smaller pieces. We then approximate the map on each piece using some finite 
collection of stored data and an evaluation method that computes the value of the map 
when needed, using the stored data. The sheaf data model formalizes and generalizes this 
approach. 

9.1 Coordinates 

The first step in this formalization is to provide a general mechanism for referring to the 
points in the base space. We saw previously that this requires a coordinate system and 
that we can not in general cover the entire base space with a single coordinate system. 
We saw in the conceptual aspect for the base space role that the base space is a 
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topological space with a poset of parts and we saw in the computational aspect that the 
poset of parts can be refined into a cell complex. Each cell has local coordinates and any 
point in a cell can be referred to using the local coordinates. Every point in the base space 
is in some cell, so any point in the base space can be referred to by (cell, local 
coordinates). We'll call this combination a cell point: 

cell point = (cell, local coordinates) = (c, u) 

where bold face is used to denote a vector. The cell point provides a fundamental 
mechanism for referring to any one of the infinite number of points in the base space, at 
least to within the numerical accuracy of whatever floating point type we use to represent 
vector components. 

9.2 Local section space 

The next step is to formalize the evaluation method on each piece of the base space. We 
assume that every cell has an associated local map: 

value: Ed � A →  F 

where Ed is the local coordinate space for the cell and A is the parameter space for the 
map. A is a finite but otherwise arbitrary n-ary relation on primitive types, so a ∈ A is an 
n-tuple of primitive values.  

We call this type of map a parameterized computable function. We can view such a 
function as a family of maps: 

value(*, a): Ed →  F 

with one member of the family for each a ∈ A. This family is the local section space, the 
space of all maps defined by this parameterized computable function. The parameter 
tuple a is the data representation of a local section and the local section space is in one to 
one correspondence with the parameter space A. We can use A to represent the section 
space as a table. We'll discuss the table in more detail when we discuss the data aspect for 
the section role. 

9.3 Global section space 

We now have a local section space for each cell and the next step is to assemble all the 
local section spaces into a global section space. The global section space is the Cartesian 
product of the local section spaces. A global section is a tuple of local sections, with one 
component for each cell in the base space. 

We can't evaluate a global section directly, we can only evaluate local sections directly. 
To evaluate a global section at a base space point specified by a cell point (c, u), we have 
to first select the local section corresponding to c and evaluate it at local coordinate u: 

global.value(c, u) = global.restrict_to(c).value(u) 
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9.4 Compatibility conditions 

The cells may overlap. If a base space point b is in more than one cell, say c and c', then 
it gets coordinates in each cell, (c, u) and (c', u'). The local section can be evaluated in 
both c and c'. But for the map to be single value we must get the same value in both cells, 
leading to the compatibility condition 

global.restrict_to(c).value(u) = global.restrict_to(c').value(u') wherever c, c' overlap 

In terms of our local section space, this condition becomes two conditions: 

1. the local evaluation methods must be compatible, and 

2. the parameter tuples must be compatible. 

Condition 2 selects a subset of the global section space. 

9.5 Cell complexes and meshes 

We assumed in the discussion above that the pieces we divided our base space into 
formed a cell complex. The section representation we developed however does not in fact 
require all the properties of a cell complex. In particular, we saw previously that a finite 
cell complex contains the complete dimensional cascade of cells. If d is the highest 
dimension in the complex, then cells of every dimension less than d must be present. In 
practice, many mesh types don't explicitly provide the entire dimensional cascade and our 
section representation doesn't require it. We require only that the cells entirely cover the 
base space and that every cell is equipped with a local coordinate system. 

9.6 Additional reading 

The parameterized computable function abstraction, which connects numerical 
representation of maps to relations, is a central part of the sheaf data model and is not to 
the best of my knowledge discussed anywhere else except: 

(Butler, 2012) attempts to rigorously specify the mathematics of the sheaf data model. 

However, the general style of map representation discussed in this section can be viewed 
as a generalization of the finite element representation of maps, so the reader may find it 
useful to review the finite element method. 

(Hughes, 2000) is a standard text on the finite element method. 

10 Data aspect for the base space role 

The data aspect focuses on how to represent a base space as persistent data. Our 
conceptual model for a base space is a topological space with a poset of parts, which we 
refined in the computational aspect into a poset of cells. The central notion in the data 
aspect is the lattice ordered relation. 



Sheaf System Analysis and Design Tutorial  David M. Butler 

Release 1.2 30 of 46 4/18/2013 

10.1 Lattice ordered relation 

Remember that an n-ary relation is a set of n-tuples and that a poset consists of two 
components, an ordinary set called the base set and an order relation on the base set. We 
define a partially ordered relation as a poset in which the base set is itself a relation and 
the order relation is an arbitrary, externally specified order relation. In particular, the 
order relation is not necessarily derived from the attributes of the base relation.  

We assume that the relation is finite. Hence the poset is finite and every finite poset has 
an associated finite distributive lattice. We can interpret our partially ordered relation as 
either "poset ordered" or "lattice ordered". The poset ordered relation refers to just the 
tuples and covering relation explicitly enumerated in the specification of a given instance. 
The lattice ordered relation interprets the explicitly enumerated members as JIMS and 
implicitly includes the JRMs of the associated finite distributive lattice. The lattice 
interpretation is more general, it includes the poset interpretation as a subset, so we will 
usually think of our partially ordered relation as lattice ordered. 

We introduce the use of lattice ordered relations to represent base spaces by an example. 
As usual, the example has to be small so we can create all the diagrams. The polyline of 
Figure 15 will do; we repeat the covering relation graph in Figure 22 for convenient 
reference. We begin by introducing a relation to describe the attributes of cells: 

cell: (id: string, d: int, cell type: string) 

Now we can describe the basic parts in the polyline example as an instance of the cell 
relation, as shown in Table 7. 

 

Figure 22: Polyline graph 

 

Table 7: Polyline cell relation 

We can now merge the two into a partially ordered relation, a poset in which each 
member is a tuple in a relation, as shown in Figure 23. 

v0 v1 v2

s0 s1

cell type
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segment1s0 segment1s1

vertex0v0 0 vertexv1 0 vertexv2
 

Figure 23: Polyline as poset ordered relation. 

The visual representation in Figure 23 is the most accurate way to visualize a partially 
ordered relation. However it is not very practical for several reasons. If there are more 
than a few members or more than 2 or 3 attributes, the diagram can be difficult to draw. 
Furthermore, as we shall shortly see, we also want to associate a partial order with the 
columns of the relation, which is essentially impossible when drawn this way. 

Since the nodes in the graph correspond to rows in the table, we usually depict an ordered 
relation with the graph drawn sideways, greater members are left of lesser members, and 
"attached" to the rows, as in Figure 24. As shown in the figure, we also associate an id 
with each node, rather than an attribute of the relation. This is partly just visual 
convention, but it is also true that the Sheaf System assigns an id to each node, so there is 
no need to declare an id attribute. 

cell type

segment

segment

vertex
d

1

1

0

0

0

vertex

vertex

v0

v1

v2

s0

s1

 

Figure 24: Polyline table with row graph "attached" to the rows. 

We can represent any cell poset, in fact any partially ordered structure, and its associated 
finite distributive lattice as a lattice ordered relation. The general rules are: 

1. The structure is represented by a lattice ordered relation with a schema appropriate to 
the basic parts in the structure. 

2. Each basic part in the structure is represented by a JIM in the lattice with a 
corresponding node in the graph and a row in the table.The row contains precisely the 
new information the JIM introduces into the lattice. Conversely, each row in the table 
represents a basic part in the structure. 

3. Each composite part in the structure is represented by a JRM in the lattice with a 
correspond node in the graph but no row in the table. A JRM corresponds to a 
collection of rows. In the figures, JRMs are given empty placeholder rows just to 
make nodes in the row graph line up with rows in the table. 
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Incidentally, the last rule explains why the Sheaf System provides ids for the nodes in the 
graph rather than relying on attributes in the relation - we have to have ids for the nodes 
that don't have corresponding rows in the table. Figure 25 shows the lattice ordered 
relation for the well of Figure 14. 

well

upper well

bore 1

bore 2

j

lower well

s0

s1

s2

s3

s4

s5

df

v1
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v6

segment1

segment1

segment1

segment1

segment1

segment1

vertex0

vertex0

vertex0

vertex0

vertex0

vertex0

vertex0
 

Figure 25: Well as lattice ordered relation. 

10.2 Additional reading 

The lattice ordered relation abstraction, like the parameterized computable function 
abstraction of the previous section, is unique to the sheaf data model.  

(Butler, 2012) is the only reference. 

But take away the partial ordering and you have an ordinary relation, as in the relational 
data model. The reader may find it useful to review relational database theory. There is a 
huge and constantly changing market for data base books. Here's two I'm familiar with. 

(Date, 2003) The comprehensive, long standing classic in the field, now in its 8th 
edition. 

(Maier, 1983) Emphasizes the mathematical theory of the relational data model. No 
longer in print, but available used. 

11 Data aspect for the fiber space role 

We saw in the discussion of the conceptual role that any type could in principle play the 
fiber space role but that in practice the algebraic types of mathematical physics were 
particularly important. In the discussion of the computational aspect, we found that these 
types could be represented by classes in object-oriented programming languages. 
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11.1 Schema lattice 

As is typical of classes in object-oriented programming, the classes we are interested in 
are connected to each other by inheritance (is_a) and aggregation (has_a) relationships. 
We saw in the Part Space tutorial that these relationships can be described by a subobject 
hierarchy. Every object of a given class has a base class subobject associated with each 
direct inheritance relationship and a data member subobject associated with each direct 
aggregation relationship. We further saw that the subobject hierarchy can be described as 
a part space, that is, a finite distributive lattice. 

We thus arrived at the notion of a schema lattice for a collection of classes. We gave a 
general set of rules for interpreting a finite distributive lattice as a class schema. We 
restate the rules here, explicitly in the language of finite distributive lattices: 

1. A type is represented by a table with a schema lattice describing the columns of the 
table. 

2. A schema lattice corresponds to a collection of types related by subobject inclusion 
and each member of the lattice corresponds to a type. We will refer to the lattice 
member corresponding to a type as the class schema member for the type. A typical 
class schema member, in practice, is somewhere in the interior of a schema lattice, 
that is the type both includes subobjects and is included as a subobject.  

3. The JIMs of a schema lattice correspond to explicitly specified class or primitive 
types. This captures the notion that an explicitly specified type is more than the sum 
of its subobjects, it has associated operations or member functions that are implied by 
the type but not explicitly represented in the lattice. 

4. The JRMs of a schema lattice correspond to types that can be implicitly generated 
from the explicitly specified types. An implicit type corresponds to a C++ struct with 
data members but no member functions. The data members are precisely those 
defined by its subobject schema (see item 7 below). 

5. The atoms of a lattice schema are types with no subobjects. A atom thus represents 
either a class type with no base class and no data members or it represents a primitive 
type. This captures the notion that the parts and implementation of a primitive type 
are hidden and not represented in the part space.  

6. The schema lattice for a given type is the down set of the class schema member. The 
down set of a member of a lattice is itself a (sub)lattice.  

7. The subobject schema for a given type is specified by the largest JIMs in the strict 
down set of the class schema member. (The "strict" down set of a given member is 
the set of members strictly below the given member; it doesn't include the given 
member itself.). Equivalently, we can define the subobject schema to be the join of 
the largest basic parts. This is a unique JRM in lattice. We can thus think of the 
subobject schema as either an individual lattice member or a set of subobjects. 
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8. The relation schema for a given type is specified by the smallest JIMs (atoms) of 
primitive type in the down set of the class schema member. Equivalently, the relation 
schema is the join of the atoms of primitive type, which is another unique JRM. So 
we can also think of the relation schema as either an individual member of the lattice 
or a set of primitive subobjects. 

9. The relation schema for a type specifies the columns in the table representing the 
type. 

As an example, we can construct the schema lattice for the class hierarchy corresponding 
to the physical property type hierarchy of Figure 9. As we noted in section 8, the class 
hierarchy mirrors the type hierarchy. We'll focus on the schema for class E2 in order to 
make the diagram simpler, Figure 26. Since type inheritance implies subobject inclusion 
and since the cover relation arrows point in the direction opposite inclusion, we see that 
Figure 26 is essentially the E2 subgraph of  Figure 9 turned upside down. 

 

Figure 26: Schema lattice for class E2, the 2D Euclidean vector. 

Figure 27 shows the subobject schema as specified by rule 7 while Figure 28 shows the 
relation schema as specified by rule 8. 

11.2 Lattice ordered relation with schema lattice 

We can combine the schema lattice abstraction presented in the preceding section with 
the lattice ordered relation abstraction of section 10.1. We can visualize the lattice 
schema as attached to the columns of a table instantiated on the relation schema. The 
rows of the table can be ordered independently of the columns, so we can also attach a 
lattice to the rows, as shown in Figure 29. The rows in this figure, each a 2D vector, do 
not include each other, so there are no links between the JIMs in the row graph. The "unit 
vectors" member is included as an example of a JRM. 
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Figure 27: Subobject schema 

 

Figure 28: Relation schema 

11.3 Generic class features 

The lattice schema construction can be viewed as defining a generic class with the 
following features: 

• a class schema,  

• a subobject schema,  

• a relation schema,  

• data members specified by the schema, and 

• member functions unique to the class but not specified by the schema. 

To use the relation schema to support data persistence, it's reasonable to require that the 
class have 3 additional tuple related features: 

• conversion to tuple: an operator that converts an instance of the class to a tuple 
specified by the relation schema; 

• constructor from tuple: a constructor that takes a tuple specified by the relation 
schema and creates an instance of the class; and 

• assignment from tuple: an assignment operator that initializes an instance from a 
tuple specified by the relation schema. 
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Figure 29: E2 table with lattice schema. 

11.4 Subtypes and restriction 

If we have a schema lattice S and two schema members s, s' ∈ S with s' ≤ s, we say the 
type defined by s' is a subtype of the type defined by s. We have to immediately point out 
that this definition of subtype is the opposite of the definition frequently used in object-
oriented languages, where a derived class is usually called a subtype of its base class. 
However the definition given here is the natural one for a schema lattice. It has the 
desirable property that a subobject is associated with a subtype. The usual object-oriented 
definition associates a subobject with a super type. 

A projection operation in relation theory selects a specified subset of the components in a 
tuple. Given a row r from a table Ts with schema s, we can create a subobject r' of type s' 
by projecting r onto the relation schema of s'. We say that r' is the restriction of row r to 
s'. 

If we project every row in Ts onto s', we create another table Ts'. We call Ts' the 
restriction of table Ts to s'. Restriction defines a map: 

ρs's: Ts →  Ts' 

that takes each row in Ts to its restriction in Ts'. From the definition of projection, the 
restriction map ρs's is defined if and only if s' ≤ s.  

If s" is another member of S with s" ≤ s' ≤ s, then from the properties of projection we 
have: 
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ρs"s = ρs"s' � ρs's and 
ρss = identity map 

Furthermore, we consider each restriction distinct, Ts = Ts' if and only if s = s'. 

If we now restrict Ts to every s' ≤ s, we get a family T = {Ts': s' ≤ s} of tables related by 
restriction. We can define the restriction relation � on T by Ts � Ts' if and only if there is 
a restriction map ρs's, that is, if and only if s' ≤ s. Note that the order in T is the reverse of 
the order in S. From the properties of the restriction map given above, we have: 

Ts" � Ts' and Ts' � Ts implies Ts" � Ts,  
Ts � Ts, and 
Ts � Ts' and Ts' � Ts implies Ts = Ts' 

so � is an order relation on T and (T, �) is a partially ordered set. 

We can visualize the family of tables created by restriction using class E2. But we have 
to make the schema for E2 even simpler in order to make the diagram drawable. So we 
discard most of the E2 schema to create the simplified E2 schema and table in Figure 30. 
The corresponding family of table restrictions in shown in Figure 31. 

 

Figure 30: Simplified E2 schema and 
table 

 

Figure 31: Family of restrictions of 
simplified E2 
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11.5 Sheaf of lattice ordered relations 

The mathematical concept that ties all these ideas together and forms the central structure 
of the sheaf data model is the sheaf of lattice ordered relations. The sheaf concept was 
first introduced during and just after World War II in the context of topology as a certain 
kind of map from the family of open sets of a topological space to a family of sets of 
some specific type, for instance groups. Many treatments of sheaf theory still address this 
notion of sheaf. But the family of open sets of a topological space forms a special kind of 
lattice called a complete Heyting algebra and it was soon recognized that the definition of 
a sheaf relied only on this lattice structure, not the fact that the members of the lattice 
were the open sets of a topological space. So the sheaf concept was redefined in terms of 
Heyting algebra and from there generalized still further in terms of category theory. Most 
modern treatments of sheaf theory address the categorical version. 

Fortunately, we need only the simplest aspects of sheaf theory. It turns out that every 
finite distributive lattice is also a complete Heyting algebra, so for our limited needs, we 
can define the sheaf concept in terms of the finite distributive lattice. For our purposes, a 
sheaf is an order reversing map φ from a finite distributive lattice S to a family of sets T 
partially ordered by restriction. Order reversing means that for all s, s' ∈ S, s' ≤ s implies 
f(s) � f(s'). 

Our specific interest is when S is a schema lattice for a lattice ordered relation and T is 
the corresponding family of table restrictions. We thus have a sheaf of lattice ordered 
relations.  

The sheaf for our simplified E2 example is shown in Figure 32. 

 

Figure 32: Sheaf of lattice ordered relations for simplified E2 
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11.6 The sheaf data model 

The sheaf data model interprets every type as a sheaf of lattice ordered relations, 
represented by a table combined with a row graph and a column graph. We refer to this 
combination as a sheaf table. A sheaf data base is a collection of sheaf tables. Every table 
has an associated table, its schema table. The row lattice of the schema table defines the 
schema lattice of the former table, which we will refer to as the object table. The schema 
recursion terminates in a special table, the primitive schema table, which is its own 
schema table. (The primitive schema table was called the schema part table in the Part 
Space and Part Spaces for Scientific Computing tutorials.) Every sheaf database contains 
two additional special tables. The primitives table is a special schema table that describes 
the memory requirements for each primitive type supported by the system. Finally, the 
namespace table is a table of contents for a sheaf data base. It contains a basic part for 
each other table in the data base. 

11.7 Additional reading 

The schema lattice concept is another sheaf data model specific concept. 

(Butler, 2012) is the only reference. 

But the reader may want to review lattice theory while reading this section. 

(Davey, et al., 2002) is the one to have handy. 

Sheaf theory has traditionally been firmly in the domain of pure mathematics and only 
within the last decade or so begun to find its way into applications. As a result, there is no 
good introductory text on sheaf theory. 

(Goldblatt, 1984) is mostly about category theory and logic, but section 4.5 "Bundles and 
sheaves" and section 14.1 "Stacks and sheaves" are fairly readable, if incomplete, and 
actually draw a picture or two. 

(Tennison, 1976) treats the topological space version of sheaves, mostly from the point of 
view of set theory rather than category theory, which is helpful. Chapters 1 and 2 are 
relevant but slow going. 

(Miraglia, 2006) is a comprehensive reference and understandable, if you read very 
carefully. Chapters 22 and 23 are the most relevant. His "discrete sheaf" in example 23.11 
is something very close to our definition of sheaf. Pretty dense material, over 500 pages 
and not a single picture, unless you count the arrow chasing diagrams of category theory. 

(Mac Lane, et al., 1992) is another well known reference. Chapter 2 is the most germane. 
But again, pretty tough sledding. This one has 600 pages without any pictures except 
arrow chasing. 
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12 Data aspect for the section role 

The discussion of the computational aspect for the section role developed the 
parameterized computable function as the local section space associated with each cell in 
the base space. The global section space was represented by the collection of local 
section spaces. The task of this section is to describe the data representation of a section. 
As with all objects in the sheaf data model, a section will be represented as a row in a 
table, so the task becomes defining the schema of the table. 

We previously developed the lattice ordered relation to describe the data aspect of base 
spaces and developed the schema lattice to describe the data aspect of fiber spaces. We 
then combined the two structures into a sheaf of lattice ordered relations which can 
represent either a base space or a fiber space. The major motivation for doing so is that 
we need to combine the two. The schema for a section space is a combination of the row 
lattice of its base space with the schema lattice of its fiber space. The sheaf abstraction 
gives us the mathematical space in which to construct this combination. 

In the following, let B be a topological space with a cell complex C, let C be the poset 
with base set C, ordered by point set inclusion, and let C be the finite distributive lattice 
associated with C. Let F be an arbitrary property space with schema poset F and schema 
lattice F. Let S be the schema poset and S be the schema lattice for a section space S with 
base space B and fiber space F. 

12.1 Local section class 

We can represent the local section space (parameterized computable function) abstraction 
as a class. Recall that the generic class associated with a schema lattice, described in 
section 11.3, has the following features: 

• class, subobject, and relation schema 

• class specific member functions, and 

• tuple conversion, constructor, and assignment functions. 

A local section class has two additional member functions: 

• value_at_coordinate: U →  F, where U is the local coordinate space for the 
section and F is the fiber space for the section, computes the value of a section, 
and 

• coordinate_at_value: F →  U computes the inverse, if it exists. 

A local section schema is the class schema for a local section class. Since the additional 
member functions of a local section class are not represented in a schema lattice anyway, 
a local section schema can be any general schema lattice. The only constraint is implicit - 
the associated class has to have the value_at_coordinate and coordinate_at_value member 
functions. In principle, the fiber space is not specified by the schema, only by the 
signature of these functions. We will see shortly that in practice the schema usually does 
specify the fiber space. 
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It is worth emphasizing that a local section class represents a local section space. The 
relation schema of the class defines the parameter space of the parameterized computable 
function. As described previously, each tuple in the parameter space corresponds to an 
individual section. The data members of an instance of a local section class correspond to 
a tuple of the parameter space, so each instance of a local section class corresponds to a 
local section. The relation tuple associated with the local section object is the data 
representation of the section. 

12.2 Global section class 

A global section schema is a general lattice schema that has one or more local section 
schema as subtypes. A global section schema class is a general class with a single 
additional member function: 

• local: C →  S takes a cell id as input and returns the id of the local section schema 
member for the cell as output. 

A global section class is a general class with a schema which is a global section schema. 
A global section class has 3 additional member functions: 

• restrict_to: C →  local section, restricts the global section to the local section over 
a specified cell, 

• value_at_cell_point: C � U →  F computes the value of the section at a cell point, 
and 

• cell_point_at_value: F →  C � U computes the inverse, if it exists. 

The global section class represents the global section space. In particular, the relation 
schema defined by the schema of the class defines the global parameter space. An 
instance of a global class represents a global section and the associated relation tuple 
defines the data representation of the section. 

12.3 Examples 

One can construct a global section schema that meets the above requirements in very 
many different ways. We first show two examples that represent extreme cases, then 
describe a construction that occurs more frequently in practice. 

The simplest global section schema is constructed by associating all the cells in the base 
space with the same local schema. This implies that the section has a constant value 
everywhere on the base space. A simple example is shown in Figure 33. 
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mesh cell poset section schema poset
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Figure 33: Constant schema. 

At the opposite extreme, the most complex global section schema is constructed by 
associating each cell with a different, arbitrary local section schema. The global schema 
is the sum (disjoint union) of local schema for each cell, as in Figure 34. Of course, 
ensuring the compatibility conditions can be tricky with such a schema. 

local(s0) local(v0) local(v1)

a0 a1 a2 a3 a4 a5

s0v0 v1
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v0 v1

mesh cell poset section schema poset  

Figure 34: Sum schema. 

Neither of these constructions is common in practice. As we discussed in Part Spaces for 
Scientific Computing, it is extremely desireable in practice to be able to restrict a section 
to any part of the base space or fiber. This corresponds to constructing the section schema 
poset as the Cartesian product of the cell poset and the fiber schema poset, as shown in 
Figure 35. 

local(s0) = s0, E2

local(v0) = v0, E2 local(v1) = v1, E2s0, x s0, y

v1, xv0, x v0,y v1,y

s0v0 v1

s0

v0 v1

mesh cell poset section schema poset  

Figure 35: Product schema. 

12.4 Lattice tensor product 

We saw in section 7.1 that the Birkhoff representation theorem says that associated with 
every finite poset P there is a finite distributive lattice L ~ O(P). If P = A � B is a 
Cartesian product, the associated finite distributive lattice is the tensor product of the 
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lattice A = O(A) and the lattice B = O(B). We'll denote the tensor product of A and B by 
A ⊗ B, so in symbols: 

A ⊗ B = O(J(A) � J(B)) or O(A) ⊗ O(B) = O(A � B) 

The members of the tensor product lattice are joins of pairs: 

(a1, b1) � (a2, b2) � ... � (an, bn) 

where ai ∈ A, bi ∈ B and ai ≠ aj and bi ≠ bj for any i and j. 

12.5 Hetergenous section representation 

For a section schema, if the section space schema poset S = C � F, then the schema 
lattice S is the tensor product S = C ⊗ F = O(C � F). The members of the section space 
lattice are joins of pairs (base space part, fiber schema part). A section instantiated on 
such a schema has different fibers on different parts of the base space. If we take this one 
step further and make the fiber schema the sum of different representations we get a 
heterogeneous section representation in which fiber space is the same everywhere, but the 
representation of the section varies from part to part in the base space. For instance, given 
the base space lattice and fiber space schema lattice shown in Figure 36, we can choose a 
section member given by the join (upper well, CartesianE2) � (lower well, PolarE2). A 
section instantiated on this schema will use a Cartesian representation on the upper well 
and a polar representation on the lower well. The junction will be represented twice, so 
the compatibility condition must be enforced in some way. 

well

upper well

bore 1 bore 2

junction

lower well

s0 s1 s2 s3 s4 s5

df v1 v3 v4 v5 v6

PolarE2

r: double theta: double

CartesianE2

x: double y: double

base space lattice (partial) fiber schema lattice (partial)  

Figure 36: Heterogeneous section representation. 

12.6 Additional reading 

There is no good introductory treatment of the tensor product for finite distributive 
lattices that I am aware of. The tensor product for general lattices has several definitions 
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in the literature; most of the treatments are based on category theory. None take 
advantage of the simplifications possible for finite distributive lattices. 

(Gratzer, 2006) defines the tensor product for finite (but not necessarily distributive) 
lattices, but the definition given there depends on the more abstract notion of a free 
lattice. 

(Shmuely, 1979) defines the tensor product for general distributive lattices. Theorem 1.4 
constitutes a really obscure way of stating the definition given in this document. 
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